Lecture 4 Some More nmr

Conducting loops and magnetic fields "conventional" current??

http://www.mi.mun.ca/users/cchaulk/eltk1100/ivse/ivse.htm

January 28, 2016

Resonance can be achieved by changing the magnetic field strength at constant frequency ... or by changing frequency at constant magnetic field strength

Field Strength T

The 100MHz nmr Chart

100MHz Spectrum

100MHz nmr Spectrum

Chemical Shift

• The difference in resonance frequencies for hydrogens in CH₃Cl compared to CH₃Br under an applied field of 2.34T is only 35.5Hz, which is 0.35 parts per million (ppm) compared with the irradiating frequency

35 Hz	0.35	- 0 35 nnm
$100 \times 10^6 \text{Hz}$	$= 10^{6}$	– 0.35 pp m

Here, 35Hz is the difference in resonance frequency and 100MHz is the ¹H resonance frequency for B=2.34T and $\gamma = 42.58$ MHz / Tesla

Calculating Chemical Shift

At 7.05 T, a resonance is at 715 Hz (from TMS)
1. What is the spectrometer frequency?
v = γB=(42.5MHz/T)(7.05T)= 300MHz
2. What is the chemical shift in ppm???

Chemical Shift

- Depends on several things (1) electronegativity of nearby atoms, (2) the hybridization of adjacent atoms, and (3) magnetic induction within an adjacent pi bond
- (1) Electronegativity

CH ₃ -X	Electroneg- ativity of X	δ of H
CH ₃ F	4.0	4.26
CH ₃ OH	3.5	3.47
CH ₃ CI	3.1	3.05
CH ₃ Br	2.8	2.68
CH ₃ I	2.5	2.16
$(CH_3)_4C$	2.1	0.86
$(CH_3)_4$ Si	1.8	0.00 (by definition

Chemistry 328N

Chemical Shift

• (2) The Hybridization of C Effects ¹H chemical Shift

Hybrid	Type of H	Name	δ
sp ³	RCH ₃	alkyl	0.8- 1.0
sp	RC=CH	acetylenic	2.0 - 3.0
sp²	R ₂ C=CH ₂	vinylic	4.6 - 5.7

This seems like a Mystery!!

Magnetic field induced in the pi bonds if a carbon-carbon triple bond

Magnetic field induced in the pi bond of a carbon-carbon double bond

Induced circulation of pi electrons in the alkene

Outside the ring the induced field helps big magnet Induced local magnetic field of the pi electrons reinforces the applied field and provides part of the field necessary to bring a vinyl hydrogen into resonance.

Applied field, B_0

¹H-nmr spectrum of benzene

Chemical Shift

• Magnetic induction in pi bonds of a.... – a carbon-carbon triple bond shields an acetylenic hydrogen and shifts its signal upfield (to the right) to a smaller δ value – carbon-carbon double bond deshields vinylic a hydrogens and shifts their signal downfield (to the left) to a larger δ value

Chemical Shift - ¹H-NMR

Type of H	δ	Type of H	δ
(C H ₃) ₄ Si	0	ROH	0.5-6.0
RCH ₃	0.9	RCH ₂ OR	3.3-4.0
RCH ₂ R	1.2-1.4	R ₂ NH	0.5-5.0
R ₃ CH	1.4-1.7	O II	
R ₂ C=CRC HR ₂	1.6-2.6	RCCH3	2.1-2.3
RC=CH	2.0-3.0	0	
ArC H ₃	2.2-2.5	RČCH ₂ R	2.2-2.6

Chemical Shift - ¹H-NMR

Type of H	δ	Type of H	δ
O			
RČOC H ₃	3.5-3.9	$R_2 C=C H_2$	4.6-5.0
O II		R ₂ C=C HR	5.0-5.7
RČOC H ₂ R	4.1-4.7		
RCH ₂ I	3.1-3.3	ArH	0.5-8.5
RCH ₂ Br	3.4-3.6		0 5 10 1
RCH ₂ Cl	36-38		9.5-10.1
	5.0-5.0		10.10
RCH ₂ F	4.4-4.5	RCOH	10-13

Integration

"up field"

Equivalent Hydrogens

• Have <u>exactly</u> the same chemical environment

How many equivalent hydrogens??

This looks "easy" but it is not!!

Changing Spectrometers

If the resonance of the peak on a 7.05 T instrument is 715 Hz, what will the resonance frequency be at 23.5 T

• What is the resonance in ppm at 7.05 T?

• What is the resonance in ppm at 23.5 T?

Chemical shift in ppm (δ) is independent of field strength!

Ethyl Acetate

Signal Splitting

Huh?? Why??? What is going on here?? What a mess.

 Signal splitting: splitting of an NMR signal into a set of peaks by the influence of neighboring nonequivalent hydrogens

• This splitting business is actually rich in information...it is a wonderful thing!

Origins of Signal Splitting

- When the chemical shift of one nucleus is influenced by the spin of another, the two are said to be *coupled*
- Consider nonequivalent hydrogens H_a and H_b on adjacent carbons
 - the chemical shift of H_a is influenced by whether the spin of H_b is aligned with or against the applied field

Origins of Signal Splitting

Magnetic field of H _b subtracts from the applied field; H_b signal appears at a higher applied field

Magnetic field of H _b adds to the applied field; H _a signal appears at a lower applied field

Chemistry 328N

Remember...it is the **NET** field that counts

The signal of Ha is split into two peaks of equal area (a doublet)

Relative Intensity of Peaks

singlet	1
double	11
triplet	121
quartet	1331
quintete	14641
sextete	1 5 10 10 5

Pascal's triangle

The binomial coefficients

The "N+1 Rule"

- The ¹H-NMR signal of a hydrogen or set of equivalent hydrogens is split into (N + 1) peaks by a set of N equivalent neighboring hydrogens
 - All neighboring hydrogens in the analysis must have the same chemical shift (magnetically equivalent)
 - If this condition is not met, a graphical tree or second order analysis must be used to predict the splitting pattern. We will explore this condition later

NMR Splitting Patterns

Who needs DNA??

